Adapting the Top Trading Cycle for Kidney Exchange
A Synthesis of Alvin E. Roth’s Work
Raina Ahuja, Asha Camper Singh, Rachel Keirouz, Steven Stone, Mohan Paturi

The Problem
- The kidney exchange process in the United States is inefficient and forces many people to wait long periods of time for a donated kidney.

The Process

<table>
<thead>
<tr>
<th>Goal</th>
<th>The Problem</th>
</tr>
</thead>
</table>
| INCREASE | - Mechanism: patients trade their live donor’s kidney for a better spot on the cadaver queue
| - Motivation: accommodate patients who have no compatible kidney match available
| - “Clean up” |

<table>
<thead>
<tr>
<th>Formula Score + Compatibility</th>
<th>Waiting List Position</th>
</tr>
</thead>
</table>
| Extremely complex | ABO Blood Type
| HLA Tissue Type
| Pre-transplant Crossmatch (Antibody Test) |

Top Trading Cycles Algorithm (TTC)
- House Allocation Problem
- Provides an algorithm to let people trade homes if they so choose, without getting a house worse than their own
- Graph with edges between people and homes

W-chain
- Mechanism: patients trade their live donor’s kidney for a better spot on the cadaver queue
- Motivation: accommodate patients who have no compatible kidney match available
- “Clean up”

W-Chain Selection Rules
1. Minimal w-chains
 a. Simplest, solves simultaneous exchange issue
2. Longest w-chains
 a. Benefits the largest number of people
3. Remove w-chain with starting with the highest priority pair
 a. Solve O-negative disadvantage by assigning O-negative pairs highest priority

The Formula Score

- House Allocation Problem
- Provides an algorithm to let people trade homes if they so choose, without getting a house worse than their own
- Graph with edges between people and homes

W-Chain Selection Rules
1. Minimal w-chains
 a. Simplest, solves simultaneous exchange issue
2. Longest w-chains
 a. Benefits the largest number of people
3. Remove w-chain with starting with the highest priority pair
 a. Solve O-negative disadvantage by assigning O-negative pairs highest priority

Difficulties With Data
- Synthetic data
- Unsure of accuracy - difficult to get real data because of confidentiality issues
- Assumptions on percentage of those who want to waitlist

Existing Issues
- Altruism - ethical way to handle unpaired donor kidneys
- Morality of jumping the waitlist
- Dynamic graph
- Lack of nationwide participation

Current Direction
- Find incentives to encourage more hospitals to join and make kidney exchange happen on a larger scale
- Hospitals may keep the local good pairs for themselves - only enroll their hard-to-match pairs in the exchange system
- Causes loss of efficiency

Use integer programming (an optimization technique where all variables are restricted to be integers) to help find long chains:
- Chain selection rule: Longest w-chain
- An NP-hard problem to find the longest chain

Simulations

<table>
<thead>
<tr>
<th>Simulations</th>
<th>Waitlist 0% (no w-chains)</th>
<th>Exchange Method</th>
<th>O-Type % Waitlist</th>
<th>Total Trans. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
<td></td>
<td>27.6</td>
<td>53.92</td>
</tr>
<tr>
<td>TTC</td>
<td></td>
<td></td>
<td>9.6</td>
<td>91.05</td>
</tr>
<tr>
<td>Waitlist 40% (w-chains)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTCC (w-chains)</td>
<td>5.5</td>
<td></td>
<td></td>
<td>92.29</td>
</tr>
</tbody>
</table>

References and Acknowledgements

Thanks to Christine Alvarado (program director) and Shelby Thomas (graduate student mentor).

This material is based upon work supported by the National Science Foundation under Grant No. CNS-1339335.